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• Quark-Gluon-Plasma (QGP) is formed during Heavy-Ion collisions at RHIC 

and LHC.


• Different probes of the QGP : collective flow, heavy flavor, EM probes.. 


• High energetic particles (jets) created at the early stage of the collision can 

be used as probes to understand the medium.


Understanding the QGP
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Jet studies

3

As the high energetic partons traverse the medium they lose energy due to: 


• Elastic energy loss:


• Radiative energy loss:
 } Both require input from the medium

Transverse scattering rate :
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Transverse momentum broadening rate :

In the literature one employs pQCD broadening kernels:


• Static screened color centers -> 

• Dynamics moving charges -> 

• Multiple soft scattering -> 

C(q) ∝
1

(q2 + m2
D)2

C(q) ∝
1

q2(q2 + m2
D)

C(b) ∝
̂q

4
b2
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Due to the infamous infrared problem of finite temperature QCD 

=>  perturbative calculation can receive large non-perturbative contribution even at 
small coupling.


Using effective-field-theory models coupled with lattice gauge calculation one can 
resolve this problem. 


The collision kernel can be defined in terms of the behavior of certain null Wilson 
loops

=>For temperatures well above Tc these Wilson loops can be recast in the reduced 
effective theory of electrostatic QCD (EQCD)

EQCD broadening kernel
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[E. Braaten & A. Nieto, Phys. Rev. Lett. 74, 2164 (1995)]

[P. Arnold & W. Xiao Phys.Rev.D 78 (2008), 125008]

[J. Casalderrey-Solana & D. Teaney, JHEP, vol. 04, p. 039, 2007]
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The kernel was computed in a perturbative expansion in the effective theory of 
EQCD :


• The LO EQCD kernel 


• NLO corrections :


EQCD broadening kernel
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[S. Caron-Huot Phys.Rev.D 79 (2009), 065039]

[P. Arnold & W. Xiao Phys.Rev.D 78 (2008), 125008]
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EQCD broadening kernel

Beyond the perturbative result, lattice extracted non-perturbative contribution were 
computed

[G.D. Moore & N. Schlusser Phys.Rev.D 101 (2020) 1, 014505]

7

This result here is for the broadening kernel in EQCD which need to be matched to 
QCD
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Non-perturbative broadening kernel
Since EQCD is a low-energy effective theory for QCD they should both agree in the IR 
regime but in the UV they can be different.

In order to ensure the right UV behavior while keeping the IR behavior from the lattice 
result we write the full kernel:


8

[G.D. Moore, S. Schlichting, N. Schlusser, I.S arXiv:2105.01679]
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Non-perturbative broadening kernel

Long-distance behavior :

The kernel follows an area-law with sub-leading logarithm corrections


Short-distance behavior :

The kernel follows the same behavior as the LO one, where we determine  from the 
data :  

̂q0

9
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In-medium splitting rates

Using the broadening kernel at hand, one can compute in-medium splitting rates

• In the AMY approach:


where   is solution to the integral equation : g(z,P)(p⊥)

10
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In-medium splitting rates

LPM regime : 


Typical number of rescatterings within 
the formation time of bremsstrahlung 
can be large.


Interference of many soft scatterings 
need to be considered.


The broadening kernel follows a  
behavior at small distances


The rate equations become a Harmonic 
oscillator problem and solved 
analytically

b2
⊥

11

BH regime :


Formation time is small and interference 
between scatterings can be neglected.


One solves the rate equations in opacity 
expansion in the number of elastic 
scatterings with medium. 


Amounts to calculating a numerical 
integral.
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Results for non-perturbative splitting rates
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T = 250 MeV• The two temperatures (250 MeV and 500 MeV) do not display a remarkable 

difference  

• Recover LPM suppression at large momentum. 

• In the large energy region the rate is closer to the LO one as they both follow 

the same behavior in broadening kernel at short distances

• In the small energy region the rate 
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Results for non-perturbative splitting rates

13

• BH regime at small energies
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Finite medium
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Preliminary results in finite medium

To compute the rate in finite medium it is best to work in momentum space
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Transverse Momentum Broadening:The rate follows the limits : 


• : 


Similar to the LO rate


• : 


stems from the area law with string tension

q ≫ 1

q ≪ 1
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Improved opacity expansion

• We compare the finite medium with an improved opacity expansion where 
after we cut low momentum interactions, we exponentiate higher order of the 
expansion

[C. Andres et Al. JHEP 03 (2021), 102]
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Σ(M2) ≡ ∫ ⃗k 2>M2

n(t)C( ⃗k )(C1 + Cz + C1−z)

where the first order wave function is the collision integral of the initial condition

and the subsequent interactions 
are encoded in the exponential of 
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Preliminary results in finite medium

• We compute the rate in finite-medium following the approach of S. Caron-
Huot et Al. [S. Caron-Huot, C. Gale Phys.Rev.C 82 (2010), 064902]
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Medium-induced splitting rates:
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Conclusion & Outlook

• We obtained fully matched lattice extracted non-perturbative 
contribution to momentum broadening in position space


• Using this kernel we computed non-perturbative contributions to the 
splitting rates in both infinite medium


• Successfully transformed the broadening kernel to momentum 
space which allows us to compute finite medium splittings

19

• Would be interesting to include the non-perturbative results to jet studies 
(elastic and radiative interactions) in kinetic studies or MC

Thank you!
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Backup
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Gluon splitting

21
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• Elastic interaction with the thermal bath are well described by perturbative 
theory at large 

•  But when we consider smaller   we require non-perturbative input.


• For temperatures well above Tc, one can use Electrostatic QCD to compute 
the elastic broadening kernel.

q⊥ ≫ gT
q⊥ ∼ gT

Non-perturbative splitting rates

22

[S. Caron-Huot Phys.Rev.D 79 (2009), 065039]

[P. Arnold & W. Xiao Phys.Rev.D 78 (2008), 125008]

Q2 = ω2 − q2


