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Medium energy loss cncﬁ%
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In-medium energy loss is dominated by hard t
ard parton

an inverse energy cascade, driven by

multiple successive splittings.

=>Requires a good grasp on the
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physics of in-medium splittings

T/E 1
Energy fraction x=p/E

[see talk by S. Schlichting Tue 14/06]

[Blaizot et al. arXiv: 1301.6102]
[Mehtar-Tani & Schlichting arXiv: 1807.06181]
[Schlichting & I.S. arXiv: 2008.04928]
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Jet studies cncﬁ%

As the high energetic partons traverse the medium they lose energy due to:

e Elastic energy loss:

P2 K2
- -
Both require input from the medium
Q= (P, — K) transverse scattering rate :
- -
P, K, po dC@ptai)  Clan)
p—00 d?q | (27)2

 Radiative energy loss:

(1—2)P
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Transverse momentum broadening rate : cncﬁ%

In the literature one employs pQCD broadening kernels:

[X. Wang and M. Gyulassy.

2 2\2 Phys.Rev.Lett. 68 (1992)
(= +mp)= 4801483

« Static screened color centers -> C(g)

e Dynamics moving charges -> C(q) « [P Aurenche, F. Gelis,
q2(q2 + ml%) and H. Zaraket. JHEP 05

(2002), p- 043.]

Vo

* Multiple soft scattering -> C(b) gb2 [Baier-Dokshitzer-
4 Mueller-Peigne-Schiff]
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EQCD broadening kernel cncﬁ%

Due to the infamous infrared problem of finite temperature QCD

=> perturbative calculations can receive large non-perturbative contribution even at
small coupling.

C(b) = /(dzz:)é (1 — e—iQ_L'b_L) Clqy).

The collision kernel can be defined in terms of the behavior of certain light-like

Wilson loops

1 .
C(by) =~ lim —InW(L,by),

[J. Casalderrey-Solana & D. Teaney, JHEP, vol. 04, p. 039, 2007]

=>For temperatures well above Tc these Wilson loops can be recast in the reduced
effective theory of electrostatic QCD (EQCD)

[S. Caron-Huot Phys.Rev.D 79 (2009), 065039]
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EQCD broadening kernel cncﬁ%

The kernel was computed in a perturbative expansion in the effective theory of
EQCD :

e The LO EQCD kernel

( 2 22 91
mD2 gS2T CAZ - » 41 < gST )
LO gsT°Cr d*p p—p; : ) P D)
Ci(a) = s [ S L PP [aCunp(p) (1 4+ n8()) = o2TCR <
¢i (g5 +mp)J (2m)° p 2T \r > T
+ 4 N¢T; ng(p) (1 —nF(p’))] : (gl T 1L = %a° >

[P. Arnold & W. Xiao Phys.Rev.D 78 (2008), 125008]
e NLO corrections :

2.5

ClqL) x ¢3 /T?

q./T
[S. Caron-Huot Phys.Rev.D 79 (2009), 065039]
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EQCD broadening kernel

CR:T%

Beyond the perturbative result, lattice extracted non-perturbative contribution were
computed

[M. Panero, K. Rummukainen, & A. Schafer. In: Phys. Rev. Lett. 112.16 (2014), p. 162001]
[G.D. Moore & N. Schlusser Phys.Rev.D 101 (2020) 1, 014505]
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This result here is for the broadening kernel in EQCD which need to be matched to
QCD

22/12/2020
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Non-perturbative broadening kernel cncﬁ%

Since EQCD is a low-energy effective theory for QCD they should both agree in the IR
regime but in the UV they can be different.

In order to ensure the right UV behavior while keeping the IR behavior from the lattice
result we write the full kernel:

Cacn(br) = (C8en(b1) — Chaen(bL)) + Ciien(bo)

10— . 1.8 . . .
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[G.D. Moore, S. Schlichting, N. Schlusser, |.S arXiv:2105.01679]
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Non-perturbative broadening kernel cncﬁ%

Long-distance behavior :
The kernel follows an area-law with sub-leading logarithm corrections

[M. Laine, Eur. Phys. J. C, vol. 72]

Cqcp b1>1/g3, OEQCD 9 geCr [y (1 1 Ca 9
b, A+ g54b H = Zl-=-= |+ log(g54b1) ,
ggd ( ) g§d 3d - 4\ 6 ,”2 871'2 gg (3d )

Short-distance behavior :

The kernel follows the same behavior as the LO one, where we determine @o from the
data :

do
6 (ggdbl ) ° )
934

Cqcp b,<1/mp  CRr((3) 1 30\ L 5 . ,
a - 1
934 bu) 8 ((2) 292 N 9 (954b.1)" log(g3ab1 )+

] =
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Broadening kernel in momentum-space



Results in finite medium cncﬁ%

To compute the rate in finite medium it is best to work in momentum space

The rate follows the limits : Transverse Momentum Broadening:
o q >> 1 104 .
| Cr ((3) 1 3y\ 87 T = 500MeV —
C™(qL) = stc \Tagz T ) o W T = 250MeV mem
; - & Lo —
. . ~ 0
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Comparison of different Kernels cncﬁ%

 We compute the rate in finite-medium following the approach of S. Caron-

Huot and C. Gale [S. Caron-Huot, C. Gale Phys.Rev.C 82 (2010), 064902]
o - dl'y,
Medium-induced splitting rates: 7 (P, z,t) P =300T
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Comparison of different Kernels cncﬁ%

 We compute the rate in finite-medium following the approach of S. Caron-

Huot and C. Gale [S. Caron-Huot, C. Gale Phys.Rev.C 82 (2010), 064902]
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Approximation to in-medium splitting rates




Regimes cncﬁ%

Interplay between different scales

e Zl -1 =<, Few Medium Length :
scattering occur during the formation => ! L
radiation can be described using opacity (1—2)P
expansion RITEETY 79
e z(1—-2) ~0.25: T Q 4
e 1> L :rare hard scattering must lead P :‘_ - %_ _ _%_ o zP
to formation of the radiation described

«—>
by an opacity expansion /Imfp Mean-free-

. . path
K L : Multiple scatterings are

important => resummed interferences

t 2z(1 — )P 2Pz(1 — 2)
between scattering leads to the LPM ! ki q
effect o
Formation time
G ~mzlA . = k* ~ Gt
q ~ Mpl Ay 1~ 4l

[C. Andres et Al. JHEP 03 (2021), 102]
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Opacity expansion cncﬁ%
qﬁ (1 — Z)P

S 5
P % 2P

* We compare the finite medium with an opacity expansion at N=1, where we
consider a single scattering with the medium

dI'¢ .
be (P, z,t)
dz N—1
_ITRG) | Loeos (BG)) o ip
T p dE(D) dE(p)
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Resummed opacity expansion cncﬁ%

 We compare the finite medium with an improved opacity expansion where
after we cut low momentum interactions, we exponentiate higher order of the
expansion

drg,
dz

‘TP2(z

g
P zt)=
( ,Z,~) .

N=X

)Re /t dAf/ e—(z‘aE"(ﬁ)+Az:3(ﬁ2))A£¢l(r1)(ﬁ) ’
0 P

[C. Andres et Al. JHEP 03 (2021), 102]

where the first order wave function is the collision integral of the initial condition

and the subsequent interactions

are encoded in the exponential of =M = L%Mz n(CCk)C +C+Cy)
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Improved opacity expansion cncﬁ%

* [mproved opacity expansion around the Harmonic Oscillator
[Mehtar-Tani, Barata, Soto-Ontoso, Tywoniuk]

2
(1) S ) e 0m

C(bl) = ngi

dINEO a1t a1

P 2z t) = Pzt
dZ (7'Z7) dZ ( ,Z,)+ dZ

(P, z,t) .

e By self-consistently solving for the scale

Q*(P,z) =\/P2(1 — 2)3(Q?) ,

43 2
A 2 _gsT 2 2 4Q
qeff(Q ) - AT N [Cl + sz + Cl—Z(]- Z) ] In (fm%) )

e One can find correction to the HO

dJHO 2
(P,z,t) = — In|cos Q|

dz 47T

dJ)
dz

(P,2,t) =_Re / ds / 210,00 () + C.00 (20) + C1_.CW (1 — 2)u)] eFE1°

472
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Comparison to the approximations cncﬁ%

Medium-induced splitting rates: P =300T
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Beyond the broadening kernel cncﬁ%

[G.D. Moore & N. Schlusser Phys.Rev.D 102 (2020) 9, 094512]
[J. Ghiglieri et al. JHEP 02 (2022), 058, JHEP 02 (2022), 058]

* Collision kernel * Asymptotic mass
dI’
Clg,) = m2 =Cr(Z4s+ 24
* Wilson loop * Force-force-correlator
T4 » 5U_I_T
v, FF
| —@»,
Casalderrey-Solana, Teaney: 0701123 ’x.,. Braaten, Pisarski (1992) >33+

Nonperturbative gluon-zero-mode contributions:

- calculate in lattice EQCD

Caron-Huot: 0811.1603

[See talk by P. Schicho Session T03 ] Slide courtesy of N. Schlusser
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Conclusion & Outlook cncﬁ%

* Approximation to the splitting are can be effective at reproducing the
rate within their respective range of validity

 However, differences between the LO kernel which used in
phenomenological studies of jet quenching, and the non-perturbative
kernel can easily be on the order of 30%.

[G.D. Moore & N. Schiusser Phys.Rev.D 102 (2020) 9, 094512]
[J. Ghiglieri et al. JHEP 02 (2022), 058, JHEP 02 (2022), 058]
* There have been effort to extract asymptotic masses using the same

procedure which still needs to be matched to QCD.

 Would be interesting to include the non-perturbative results to jet

studies (elastic and radiative interactions) in kinetic studies or MC
[See also Talks by C. Andres & F. Dominguez ]

Ttants you!
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