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Jet quenching vs Flow

• RpPb vs v2 puzzle
• RpPb vs centrality

ATLAS:2014cpa
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Multiplicity? I
• Large fluctuations in p-Pb => Biased multiplicity selection

ALICE:2014xsp
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Hard/Soft

Hard
• Pythia Hard Process

• i-Matter ISR + Matter FSR

M
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Decreasing Virtuality |Q2| = −tn

Soft

dE
dz

= −σ ,
dpz
dt

= −σ (1)
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Correlations
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» ET increases with leading jet pT
» At higher pT energy conservation leads to decrease in ET
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Energy Loss?
Jets Pions
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Energy Loss: Explanation
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Jet quenching vs Flow

• RpPb vs v2 puzzle

ATLAS:2019vcm ATLAS:2022kqu
CMS:2016xef

ALICE:2018vuu
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vn Azimuthal Anisotropy

Azimuthal momentum correlated with
soft bulk (event plane)

dN
dφ

∝1+
∑
n

2vn cos [n(φ−Ψn)] (2)

vn = 1 + 0.25 cos(nθ)
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Transverse Dependent Distributions

=> Collins

1Fig from PHENIX Spin Physics Overview
0D. Boer, P. J. Mulders, J. C. Collins, J. Rodrigues, C. Pisano, S. J. Brodsky, M. Anselmino, M.

Boglione, U. D’Alesio, E. Leader, D.W. Sivers, F. G. Celiberto…
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Cross Section

Cross section for1 p + p → π + X :

dσ
dyd2PT

=
∑
a,b,c,d

∫
dxadxbdz
2π2z3s

d2k⊥ad2k⊥bd3k⊥Cδ(k⊥C · p̂c)J(k⊥C)Γ
σµ(xa, k⊥a)Γ

αν(xb, k⊥b)

M̂µνρ

(
M̂σαβ

)∗
∆ρβ(z, k⊥C)δ(ŝ + t̂ + û) , (3)

With generalized correlators:

Γµν
P (x, k⊥) =

∫
d(ξ · P)d2ξT

(2π)3
ei(p·ξ)

〈P |Tr [Fµρ(0)F νσ(ξ)] |P〉nρnσ
(p · n)2

=
−gµνT fg(x, k⊥) +

(
kµ⊥kν⊥
M2

p
+ gµνT

k2⊥
2M2

p

)
h⊥g (x, k2⊥)

2x
, (4)

1Anselmino:2004ky, Anselmino:2005sh
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Transverse Momentum Dependent Distributions

Φαβελ1
α (k)ελ2

β (k) = 1
2x

{
δλ1,λ2fg(x, k⊥) + δλ1,−λ2 k2⊥

2M2h⊥g (x, k⊥)
}

The Boer-Mulders/Collins flips helicity between
amplitude and conjugate
Requires two flips for unpolarized pion production =>
For gg → gg:

• BM ⊗ C => Mλ,λ
λ,λ

(
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−λ,λ

)
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: Unpolarized gluon/unpolarized hadron : Polarized gluon/unpolarized hadron
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Spin-Helicity Formalism

Matrix element for BM ⊗ C Naturally contains asymmetries

ΣBM⊗C =Ĥ⊥(1)(z, k⊥C)2
[
ĥ⊥(1)
g/A (xa, k⊥a)f̂g/B(xb, k⊥b)M̂0

1 M̂
0
2 cos (4(φab − φbc))

+f̂g/A(xa, k⊥a)ĥ
⊥(1)
g/B (xb, k⊥b)M̂0

1 M̂
0
3 cos (4(φab − φac))

]
, (5)

with M̂0
1 M̂

0
2 =g4s

N 2
c

N 2
c − 1

t2 + tu + u2

t2
,

M̂0
1 M̂

0
3 =g4s

N 2
c

N 2
c − 1

t2 + tu + u2

u2
,

and tanφij = tan
φj − φi

2
sin

θj+θi
2

sin
θj−θi
2

.
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Spin Independent

TMD matrix element contains angular correlations as well

ŝ
t̂

θ1�1' −ŝ
2papc(1− θa cos(φa − φc))

' −ŝ
4papc

[
2+ θ2a + 2θacos(φa − φc) + θ2acos[2(φa − φc)]

]
.

(pc , π/2, φc)

(pa, θa,
φa)

Ismail Soudi Small systems: Theory overview – energy loss 20/30



vn Azimuthal Anisotropy

Azimuthal momentum correlated with
soft bulk (event plane)

dN
dφ

∝1+
∑
n

2vn cos [n(φ−Ψn)] (6)

vn = 1 + 0.25 cos(nθ)
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TMD Scattering

∆φ ≡ φ~qT − φπ

π

~qT

pc

pd

Initial State Final State
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Pythia Simulation

Simple Pythia Simulation:
• Single Hard Scattering => 2 initiating partons + 2 remnants
• Generate kT for each initiating parton => Each balanced by its remnant
• Lund String Hadronization connects final parton to remnant
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Pythia Simulation

Correlation:
» Event planeΨ = 1

n arg[Q]

with Qn = 1√
M

∑M
j einφj ,

» Balance momentum φ~q .
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Pythia Simulation

Correlation:
» 〈ET 〉 at FoCal 3.9 ≤ η ≤ 5.0
» Mean transverse
momentum 〈k2T 〉 of hard
parton
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Setup

gg → gg => Most relevant for
kinematics
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Setup

Factorization x ⊗ k⊥ => Approximate to
p − A

f (x, k⊥) =
4π
〈k2⊥〉

e−k2⊥/〈k2⊥〉f (x) , (7)

〈k2⊥〉p−Pb =A1/3〈k2⊥〉p−p . (8)

Soffer Bound: b ≤ 1 and B ≤ 1

k2⊥
2M2

∣∣∣h⊥g(x, k⊥)
∣∣∣ =b · f (x, k⊥) , (9)

k2⊥
2M2

∣∣∣H⊥g(x, k⊥)
∣∣∣ =B · D(x, k⊥) . (10) 10
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p − p Results
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p − Pb Results
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Angular Distribution∆φ = φq − φπ
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Angular Distribution∆φ = φq − φπ
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Higher Harmonics: v3 & v4

BM ⊗ C

b ·B = 0.4, 〈k2⊥〉(x)
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Non-zero v3 and v4 at high-pT
» BM⊗ C important for v3
» BM⊗ BM becomes more important for v4
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RHIC Predictions
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• Quark becomes more important at RHIC
• Contributions from BM⊗ BM for quarks
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Conclusions

• Small systems constitute a unique opportunity to understand hard/soft
correlation in the initial state

• Initial state correlations can allow for access to TMDs
• Going beyond simple A1/3 approximation => Compute Spin-Dependent
rescatterings
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