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◉ Introduction I

·Hard parton evolution in heavy ion collisions

·Resolved by the medium =>= Energy loss / thermalization
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◉ In-Medium Shower

·Main focus: Hard parton traversing a QCD plasma

·Understand: Energy cascade, out-of-cone energy loss, medium response
and full thermalization of the shower =>= Important for low energy
jets
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◉ Effective Kinetic Description

·Leading Order Effective Kinetic Theory:

pµ∂µfi(~x,~p, t) = Ci[{fi}] , (1)

·Hard partons =>= Linearized Fluctuation on top of
Static Equilibrium

f (p, t) = neq(p, t) + δfjet(p, t) , (2)

·Energy distribution

D(x, θ, t) ≡ x dNa

dxd cos θ
∼ νa(Nf )

Ej
δfjet(p, θ, t) . (3)

·Exact conservation of energy, momentum and valence
charge ->- Study evolution from ∼ E to ∼ T including
full thermalization
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◉ AMY EKT

·Elastic Scatterings using
HTL screened 2 ↔ 2

·Collinear Radiation
effective 1 ↔ 2

C [{fi}] = C2↔2[{fi}] + C1↔2[{fi}] . (4)

·Analogous to QGP thermalization in pre-Hydro phase

·Using AMY rates for in-medium radiation: tform ∼
√

z(1−z)P
q̂ � L
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◉ Elastic Scattering

Elastic scattering collision integral with HTL screened matrix elements

C2↔2
a [{fi}] =

1
2|p1|νa

∑
bcd

∫
dΩ2↔2|Mab

cd(p1, p2, p3, p4)|2δF(p, p1, p2, p3, p4) (5)

Full detailed balance terms =>= Medium response

δF(p1, p2, p3, p4) = δfa(p1)[±anc(p3)nd(p4)− nb(p2)(1 ± nc(p3)± nd(p4))]

+ δfb(p2)[±bnc(p3)nd(p4)− na(p1)(1 ± nc(p3)± nd(p4))]

− δfc(p3)[±cna(p1)nb(p2)− nd(p4)(1 ± na(p1)± nb(p2))]

− δfd(p4)[±dna(p1)nb(p2)− nc(p3)(1 ± na(p1)± nb(p2))] . (6)
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◉ Collinear Radiation

Collinear radiation (including BH & LPM effects)

C g↔gg
g [{Di}] =

∫ 1

0
dz

dΓg
gg(
( xE

z

)
, z)

dz

[
Dg

(x
z

)(
1 + nB(xE) + nB

(
z̄xE

z

))

+
Dg(x)

z3

(
nB

(
xE
z

)
− nB

(
z̄xE

z

))
+

Dg
( z̄xE

z

)
z̄3

(
nB

(
xE
z

)
− nB(xE)

)]

− 1
2

∫ 1

0
dz

dΓg
gg(xE, z)

dz

[
Dg(x)(1 + nB(zxE) + nB(z̄xE))

+
Dg(zx)

z3 (nB(xE)− nB(z̄xE)) +
Dg(z̄x)

z̄3 (nB(xE)− nB(zxE))

]
,

·AMY Radiation Rate

dΓa
bc

dz (P, z, ∞ ) =
g2Pa

bc(z)
4πP2z2(1 − z)2 Re

∫ ∞

0
dt1

∫
p,q

iq.p
δE(q)Γ3(t) ◦ G(∞, q; t1,p) . (7)

·Merging/Splitting =>= Thermalization of soft sector
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◉ Longitudinal Energy Loss

·Evolution can be divided into three regimes:

1. Initial energy loss: mediated by single gluon radiation

2. Energy cascade: successive emissions lead to an energy cascade

3. Equilibration: Late time decay to soft sector
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◉ Single Emission

·Initial distribution determined from direct emissions

x

x

x

Dq(x, τ) 'δ(1 − x) +

[
x

dΓq
gq(x)
dz −

∫ 1

0
dz z

dΓq
gq(x, z)
dz δ(1 − x)

]
τ (8)

·Short lived stage =>= Subsequent
emissions lead to energy cascade
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◉ Kolmogorov-Zakharov Turbulence

·Take simple HO kernel

x
zx

(1 − z)x
dΓ(xE, z)

dz ' 1
xα

K(z) , D(x, s) = xβG . (9)

·The energy flux:

dE
dτ

µ→0
= −

∫ 1

µ/E
dz zK(z)

∫ µ/zE

µ/E
dx xβ−αG . (10)

·If β − α = −1∫ µ/zE

µ/E
dx x−1 =

[
ln(x)

]µ/zE

µ/E
= ln(z) , (11)

scale drops out =>= constant Flux a

aBlaizot, Iancu, Mehtar-Tani PRL(2013), Blaizot, Mehtar-Tani AoP(2015),
Mehtar-Tani, Schlichting JHEP(2018), Schlichting, IS JHEP(2021)
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◉ Kolmogorov-Zakharov Turbulence

·Stationary turbulent solution in
intermediate energy range
T/E � x � 1:

Dg(x) =
G√

x
, DS(x) =

S√
x
. (9)

10−4

10−3

10−2

10−1

100

101

0.001 0.01 0.1 1

T 2πT Gluon jet

10−4

10−3

10−2

10−1

100

101

0.001 0.01 0.1 1

T 2πT

G
lu

o
n

d
is

tr
ib

u
ti
o
n
:
√

x
D

g
(x
)

Momentum fraction: x = p
E

(τ, Elost)

2.4, 8%
3.9, 17%
5.2, 26%

(τ, Elost)

6.5, 35%
7.9, 44%
9.5, 53%

S
in

g
le

t
d
is

tr
ib

u
ti
o
n
:
√

x
D

S
(x
)

Momentum fraction: x = p
E

(τ, Elost)
2.4, 8%
3.9, 17%
5.2, 26%

(τ, Elost)
6.5, 35%
7.9, 44%
9.5, 53%

Ismail Soudi Finite size effects on jet thermalization 14/31



◉ Outline

◉ Introduction

◉ Effective Kinetic Description

◉ Longitudinal Energy Loss

◉ Thermalization To Large Angles

◉ Beyond AMY



◉ Thermalization To Large Angles

·Energy cascade to
soft sector

·Broadening of soft
partons to large
angle

·Thermalization of
soft sector
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◉ Thermalization To Large Angles

·Energy cascade to
soft sector
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·Broadening of soft
partons to large
angle
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·Thermalization of
soft sector
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◉ Sensitivity To Initial Parton’s Energy

·Characteristic time of the

turbulent cascade tth = 1
αs

√
E
q̂

·Scaling between different
initial parton’s energy for
small cone-sizes

·Broken for large cone-sizes
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◉ Modeling Jet Quenching

·In the presence of QGP, the jet spectrum factorizes

dσ
dpT

=

∫ ∞

0
dε P(ε,R)

dσvac

dpin
T

(pin
T ≡ pT + ε) , (10)

·The energy loss probability P(ε,R) is obtained using the BDMPS rate

P(ε,R) =

∞∑
n=0

1
n!

[
n∏

i=1

ωi
dI
ωi

dωi

]
δ

(
ε−

n∑
i=1

ωi

)
exp

[
−
∫ ∞

0
dω dI

dω

]
(11)

·Using a Milne transform =>= Exponential

·Taking vacuum spectrum dσvac
dpin

T
(pin

T ) ∝ (pin
T )−α

dσ
dpT

= Q(pT ,R)
dσvac

dpT
, ⇒ Q(pT ,R) ≈ exp

[
−
∫

dω dI
dω

(
1 − e−nω/pT

)]
(12)
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◉ Modeling Jet Quenching

·The first emission is modeled
using BDMPS finite medium rate
dΓ
dω (P, ω, t) at time t

·Medium energy loss computed by
modeling the energy remaining
inside the cone E(ω,R,L − t) after
a time (L − t) in the medium

Q(pT) = exp
[ ∫ L

0
dt
∫

dω

× dΓ
dω

1 − e
−n ω

pT

1−
E
(
ω|R,τ= L−t

tth

)
ω


] .

(13)
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◉ Modeling Jet Quenching

·Jets with energies pT ≤ 25GeV
lose significant energy in
length L = 5fm/c
=>= large suppression at low pT,
milder for pT ≤ 200 − 400GeV

·Negligible contribution of soft
fragments to narrow cone

·Large cone size (≥ 0.3) =>=
Recover energy from the soft
sector
||> Medium response
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◉ Modeling Jet Quenching

� Over-estimate energy loss since
we neglect finite size effects,
Work in progress

� Requires more refined studies of
near-equilibrium physics and jet
recoil onto the medium
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◉ Energy loss in small systems?
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·System small/short lived =>= Expect minimal energy loss

2I. Soudi et al. (2024). In: arXiv: 2407.17443.
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◉ Collinear Radiation

tf

P
(1 − z)P

zP
·Multiple scatterings =>= induced radiation

·Emission controlled by the formation time

tform ∼ z(1 − z)xE
k2

T
, k2

T ∼ q̂tform ⇒ tform ∼

√
z(1 − z)xE

q̂ , (13)

· tform � λmfp: Medium cannot resolve the quanta until
it is formed

· tform � λmfp: Multiple scatterings act coherently

·Quantum interference =>= suppression of high energy radiation
=>= LPM effect

2(Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov, Wiedemann, Arnold, Moore, Yaffe...)
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◉ Finite Size Effects: Rates

dΓa
bc

dz (P, z, t ) =
g2Pa

bc(z)
4πP2z2(1 − z)2 Re

∫ t

0
dt1

∫
p,q

iq.p
δE(q)Γ3(t) ◦ G(∞, q; t1,p) . (14)

·Long formation time: z ' 0.5
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·Short formation time: z(1 − z) ' 1
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2Caron-Huot, Gale PRC(2010), Schlichting, IS PRD(2022)
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◉ Finite Size Effects: Evolution I

·Including finite size effects in the evolution

·Global formation time:

∂tD(x) =
∫ 1

0
dz
[

dΓa
bc

dz

(x
z , z, t

)
zD
(x

z

)
− dΓa

bc
dz (x, z, t )zD(x)

]

·Systematic formation time:

∂tD(x) =
∫ t

0
ds
∫ 1

0
dz
[

dΓa
bc

dz

(x
z , z, t − s

)
zD
(x

z

)
− dΓa

bc
dz (x, z, t − s )zD(x)

]

2Barata, Domínguez, Salgado, Vila JHEP(2021)
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◉ Finite Size Effects: Results I
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◉ Finite Size Effects: Results II
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·Markedly different evolution for Systematic treatment of formation
time
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◉ Kolmogorov-Zakharov Turbulence

·Take simple HO kernel

x
zx

(1 − z)x
dΓ(xE, z

, t

)

dz ' 1

x
α

α(t − s)

K(z

, t

) , D(x, s) = xβG . (15)

·The energy flux:

dE
dτ

µ→0
= −

∫ t

0
ds

∫ 1

µ/E
dz z

∂t

K(z,

t − s

)

∫ µ/zE

µ/E
dx x

β−α

α(t − s)

G .

(16)·If β − α

α(t − s)

= −1∫ µ/zE

µ/E
dx x−1 =

[
ln(x)

]µ/zE

µ/E
= ln(z) , (17)

scale drops out =>= constant Flux
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◉ Kolmogorov-Zakharov Turbulence

·Take simple HO kernel
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◉ Kolmogorov-Zakharov Turbulence

·Stationary turbulence10−1
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◉ Bjorken Expansion: Medium-Induced Radiation I

·Bjorken expansion: T(t) = T0
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◉ Bjorken Expansion: Medium-Induced Radiation II

·Bjorken expansion: T(t) = T0
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◉ Conclusion

·Energy loss is governed by an inverse energy cascade
=>= driven by successive collinear radiation

·Energy deposited collinearly at the soft scales rapidly broadens to
large angles

·Formation time lead to dramatic effect on medium-cascade =>= Delay of
energy loss, survival of high energy partons
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◉ Cone-Size Dependence

: E(R, τ) =

∫ ∞

0
dx
∫ 1

cos R
d cos θ D(x, cos θ, τ)

(15)

·Small cone-sizes: Soft sector does not
play major role

·Large cone-sizes: Energy loss display
different behavior =>= Dominated by
thermalization

: E2π(R, τ) =

∫ ∞

2πT/E
dx
∫ 1

cos R
d cos θ D(x, cos θ, τ)

(16)
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