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◉ Introduction I

During heavy ion collisions:

» Deconfined Quark-Gluon Plasma
(QGP) is created
=>= Elliptic flow, Jet quenching

» Hard partons created at early
stages

» They must traverse the QCD
plasma, before reaching the
detector

» By interacting with the medium,
they probe the non-equilibrium
evolution of the QCD fireball

0Image generated using DALL-E.
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◉ Introduction II

» The evolution of a hard parton during heavy ion collisions

» We focus on energy loss and equilibration of hard partons once
resolved by the medium
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◉ In-Medium Shower

» Main focus: Hard parton traversing a QCD plasma

» Understand: Energy cascade, out-of-cone energy loss, medium response
and full thermalization of the shower =>= Important for low energy
jets
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◉ Effective Kinetic Description

» Based on an effective kinetic theory at leading order:

pµ∂µfi(~x, ~p,t) = Ci[{fi}] , (1)

» The hard partons are described as linearized fluctuations around the
equilibrium distribution

f(p,t) = neq(p,t) + δfjet(p,t) , (2)

» We define energy distribution

D(x, θ,t) ≡ x
dNa

dxdcos θ
∼ νa(Nf)

Ej
δfjet(p, θ,t) . (3)

» Exact conservation of energy, momentum and valence
charge ->- Allow us to study the evolution from ∼ E to
∼ T including full thermalization
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◉ Effective Kinetic Description

» Elastic Scatterings using
HTL screened 2 ↔ 2

» Collinear Radiation
effective 1 ↔ 2

C[{fi}] = C2↔2[{fi}] + C1↔2[{fi}] . (4)

» Similar to thermalization of QGP in pre-Hydro studies
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◉ Elastic Scattering

Collision integral for ellastic scattering using HTL screened matrix
element

C2↔2
a [{fi}] =

1

2|p1|νa

∑
bcd

∫
dΩ2↔2|Mab

cd(p1,p2,p3,p4)|2δF(p,p1,p2,p3,p4) (5)

Keeping track of the medium response by including the full detailed
balance terms

δF(p1,p2,p3,p4) = δfa(p1)[±anc(p3)nd(p4)− nb(p2)(1± nc(p3)± nd(p4))]

+ δfb(p2)[±bnc(p3)nd(p4)− na(p1)(1± nc(p3)± nd(p4))]

− δfc(p3)[±cna(p1)nb(p2)− nd(p4)(1± na(p1)± nb(p2))]

− δfd(p4)[±dna(p1)nb(p2)− nc(p3)(1± na(p1)± nb(p2))] . (6)
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◉ Collinear Radiation

» Multiple scatterings
=>= induced radiation

» Resummed into an effective 1 ↔ 2

» Emission controlled by the
formation time

tform ∼z(1− z)xE

k2
T

⇒ k2
T ∼ q̂tform (7)

tform ∼

√
z(1− z)xE

q̂
⇒ q̂ ∼ m2

D

λmfp
(8)

» tform � λmfp: Medium cannot resolve
the quanta until it is formed

» tform � λmfp: Multiple scatterings
act coherently

» Coherence effects lead to suppression of high energy radiation
=>= LPM effect

0(Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov, Wiedemann, Arnold, Moore, Yaffe...)
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◉ Collinear Radiation

Collinear radiation treated using the AMY formalism for an infinite
medium (including BH & LPM effects)

Cg↔gg
g [{Di}] =

∫ 1

0

dz
dΓg

gg(
(
xE
z

)
,z)

dz

[
Dg
(x
z

)(
1 + nB(xE) + nB

(
z̄xE

z

))

+
Dg(x)

z3

(
nB

(
xE

z

)
− nB

(
z̄xE

z

))
+
Dg
(
z̄xE
z

)
z̄3

(
nB

(
xE

z

)
− nB(xE)

)]

− 1

2

∫ 1

0

dz
dΓg

gg(xE,z)

dz

[
Dg(x)(1 + nB(zxE) + nB(z̄xE))

+
Dg(zx)

z3
(nB(xE)− nB(z̄xE)) +

Dg(z̄x)

z̄3
(nB(xE)− nB(zxE))

]
,

» Including all the statistical factors which lead to thermalization of
soft sector
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◉ Longitudinal Energy Loss

» Evolution can be divided into three regimes:

1. Initial energy loss: mediated by single gluon radiation

2. Energy cascade: successive emissions lead to an energy cascade

3. Equilibration: Late time decay to soft sector
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◉ Single Emission

» Initial distribution determined from direct emissions

Dq(x, τ) ' δ(1− x) +

[
x
dΓq

gq(x)

dz
−
∫ 1

0

dz z
dΓq

gq(x,z)

dz
δ(1− x)

]
τ (9)

» Short lived stage =>= Subsequent
emissions lead to energy cascade
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◉ Energy Cascade

» Stationary turbulent solution in intermediate energy
range T/E � x � 1:

Dg(x) =
G√
x

, DS(x) =
S√
x

. (10)

» Fixed point of the differential equaiton

Cg[{Di}] =

∫ 1

0
dz

dΓ
g
gg

(
xE
z

, z
)

dz
Dg

( x

z

)
−

1

2

dΓ
g
gg(xE, z)

dz
Dg(x)

+

∫ 1

0
dz

dΓ
q
gq

(
xE
z

, z
)

dz
DS

( x

z

)
− Nf

∫ 1

0
dz

dΓ
g
qq̄

(xE, z)

dz
Dg(x) ,

CS[{Di}] =

∫ 1

0
dz

dΓ
q
gq

(
xE
z

, z̄
)

dz
DS

( x

z

)
−

dΓ
q
gq(xE, z)

dz
DS(x)

+ 2Nf

∫ 1

0
dz

dΓ
g
qq̄

(
xE
z

, z
)

dz
Dg

( x

z

)
, (11)

CV[{Di}] =

∫ 1

0
dz

dΓ
q
gq

(
xE
z

, z̄
)

dz
DV

( x

z

)
−

dΓ
q
gq(xE, z)

dz
DV(x) , (12)
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◉ Energy Cascade

» Stationary turbulent solution in
intermediate energy range
T/E � x � 1:

Dg(x) =
G√
x

, DS(x) =
S√
x

. (10)

» Existence of a fixed point of the
differential equation comes from
the fact that the rate behaves as
1/

√
xE
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◉ Thermalization To Large Angles

» Energy cascade to
soft sector

» Broadening of soft
partons to large
angle

» Thermalization of
soft sector
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◉ Cone-Size Dependence

: E(R, τ) =

∫ ∞

0

dx

∫ 1

cos R

dcos θ D(x,cos θ, τ)

(11)

» Small cone-sizes: Soft sector does not
play major role

» Large cone-sizes: Energy loss display
different behavior =>= Dominated by
thermalization

: E2π(R, τ) =

∫ ∞

2πT/E

dx

∫ 1

cos R

dcos θ D(x,cos θ, τ)

(12)
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◉ Sensitivity To Initial Parton’s Energy

» Characteristic time of the
turbulent cascade tth = 1

αs

√
E
q̂

» Scaling between different
initial parton’s energy for
small cone-sizes

» Broken for large cone-sizes
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◉ Modeling Jet Quenching

» In the presence of QGP, the jet spectrum factorizes

dσ

dpT
=

∫ ∞

0

dε P(ε,R)
dσvac

dpinT
(pinT ≡ pT + ε) , (13)

» The energy loss probability P(ε,R) is obtained using the BDMPS rate

P(ε,R) =

∞∑
n=0

1

n!

[
n∏

i=1

ωi

dI

ωi

dωi

]
δ

(
ε−

n∑
i=1

ωi

)
exp

[
−
∫ ∞

0

dω
dI

dω

]
(14)

» Using a Milne transform =>= Exponential

» Taking vacuum spectrum dσvac
dpin

T

(pinT ) ∝ pinT
−α

dσ

dpT
= Q(pT,R)

dσvac
dpT

, ⇒ Q(pT,R) ≈ exp

[
−
∫
dω

dI

dω

(
1− e−nω/pT

)]
(15)
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◉ Modeling Jet Quenching

» The first emission is modeled
using BDMPS finite medium rate
dΓ
dω

(P, ω,t) at time t

» Medium energy loss computed by
modeling the energy remaining
inside the cone E(ω,R,L− t) after
a time (L− t) in the medium

Q(pT) =exp
[ ∫ L

0

dt

∫
dω

× dΓ

dω

1− e

−n ω
pT

1−
E

(
ω|R,τ= L−t

tth

)
ω


] .

(16)
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◉ Modeling Jet Quenching

» Jets with energies pT ≤ 25GeV lose
significant energy in length
L = 5fm/c
=>= large suppression at low pT,
milder for pT ≤ 200− 400GeV

» Negligible contribution of soft
fragments to narrow cone

» Large cone size (≥ 0.3) =>= Recover
energy from the soft sector
||> Medium response
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◉ Modeling Jet Quenching

� Over-estimate energy loss since
we neglect finite size effects,
Work in progress

� Requires more refined studies of
near-equilibrium physics and jet
recoil onto the medium
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◉ Flavor Conversion

» Due to scatterings with the medium =>= Partons change flavor
» The rate of flavor conversion is determined by the d.o.f. of the
medium

◉ Ratio of the rate
Γg→q

Γq→g

» Annihilation gg → qq̄
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» Scattering gqi → gqi
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16E1E2E3E4
(2π)4δ(4) (p1 + p2 − p3 − p4) ,
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◉ Flavor Conversion

» The rate of flavor conversion is determined by the d.o.f. of the
medium

» Since gluon have a larger # partons to scatter of (quarks must
scatter with other quarks of same flavor) =>= Gluons are converted to
quarks at a higher rate than quarks to gluons

» Annihilation gg → qq̄
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◉ Flavor Composition Of The Soft Sector

◉ E ≤ 2.5GeV

» Vacuum (MATTER)
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» Kinetic evolution
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◉ Flavor Composition Of The Shower

◉ 2.5GeV ≤ E ≤ 22.5GeV

» Vacuum (MATTER)
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» Kinetic evolution
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» Vacuum + Energy loss (MATTER
+ MARTINI)
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» Quark content of the in-medium shower is much more quark-like than in
vacuum
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◉ Flavor Composition Of The Shower

» An order of magnitude increase
in the fermion content of jets
due to the medium.

» New transport coefficients needed
to incorporate quark exchange in
jet quenching discussion.

» Increase in fermion content
affects conserved charge
fluctuations, not energy profile
of the jet.

� Hadronization introduces own
fluctuations and may introduce
additional energy loss. (Work in
progress) 1 2 3 4 5 6
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◉ Conclusion

» Energy loss is governed by an inverse energy cascade
=>= driven by successive collinear radiation

» Energy deposited collinearly at the soft scales rapidly broadens to
large angles

» Kinetic evolution can be seen as a Green’s function
=>= can be convoluted to obtain more evolved evolution

» Chemistry of jets is highly sensitive to the medium
=>= several interesting effects at play: baryon enhancement, QGP
chemistry, etc.
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Thank you for your attention \o/
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